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The Global Positioning System provides a real-time means of updating an aircraft inertial

navigation system to reduce position and velocity errors due, in part, to an inexact

knowledge of the gravity field in which the aircraft is flying. Gravity disturbance

modeling via such techniques as point mass or finite element modeling provides a

real-time means of reducing this gravity field error. This paper demonstrates that should

the navigator be denied the GPS signal, the modeling of gravity disturbances can

adequately minimize the navigation error. In the presence of the GPS signal, the gravity

disturbance component information, combined with GPS data via Kalman filtering,

cons#gtitutes a further refinement in the system.
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THE GLOBAL POSITIONING SYSTEM VERSUS GRAVITY

DISTURBANCE MODELING IN AN INERTIAL NAVIGATION SYSTEM

-

INTRODUCTION

Recent developments in inertial instrumentation have substantially improved the

performance of inertial navigation systems in both aircraft and shipboard applications.

The level of confidence in these inertial systems has risen to the point that the geodetic

community has begun to utilize inertial instrumentation to perform surveys of geodetic

quality (1). In the geodetic survey mode, data from inertial systems are processed

However,

post-mission to determine the components of the gravity disturbance vector.

in the navigation mode, operating in real-time, these gravity disturbance components

must somehow be furnished to the inertial navigation system, in which they have now

become a significant error source.

In state-of-the-art inertial navigation systems, electrostatically supported gyros

have reduced drift rates to as low as 0.000001°/hr and electrostatic accelerometers have :

S
reduced accelerometer bias to as low as 1 ug €1 x 107 m/sec/sec) (2). The ‘

accelerometer is a specific force instrument, i.e., it measures the total acceleration due

to the vehicle, errors and biases, gravity. Hence, the unknown gravity disturbance

comnponents act as time dependent accelerometer biases, which, by Einstein's Principle of

Equivalence, cannot be separated by instrumentation operating at the acceleration level.

Although the gravity gradiometer shows great promise for real-time determination

of the gravity disturbance components (3), the implementation of such a system remains

just beyond our grasp. Thus, we are led to the necessity to provide either a means of

rmodeling the gravity disturbance in real-time or a means of updating the inertial naviga-

tion system with position and velocity information in real-time, so that the errors induced

by the unmodeled gravity disturbances can be minimized.
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Position information derived from electronic systems such as VORTAC, DME,
LORAN and velocity information derived from Doppler radar is sufficiently accurate for
many applications. .To satisfy more stringent requirements, the Global Positioning System

(GPS) has been developed. When used with appropriate receivers, it is capable of deriving ¢ o3

/O~
a moving vehicle's pasition and velocity to an accuracy ot{ about < 8 meters fand { .05 j

meters/second (one sigma) (4).

The availability of the Global Positioning System begs the question of whether it
negates the necessity of modeling the gravity disturbance vector, i.e. --Whether there is
any need to model the gravity disturbance, since we can cancel its effect by using the
GPS. This paper answers that question by using error propagation techniques to show the
effect of the GPS data in a typical navigation system, both with and without compensa-
tion by gravity disturbance modeling,.

In the modern inertial navigation system (Figure 1) the gravity vector g computed
in a feedback loop contains terms due to the earth's gravitational field and due to the
earth's rotation:

B=G- 0 Bt W
where
g = gravity vector

G = gravitation vector

Qie = skew symmetric matrix form of earth's inertially = | 0 0 0 ]
re ferenced angular velocity, Wa 0 0 Wi i

H

r = geocentric position vector of vehicle 0 w, O _!

Now, the gravitation vector G is itself the sum of a reference gravitation vector y
and the gravity disturbance vector §g:
G=y+g (2)

Typically, the inertial navigation system computes the components of y in terms

of those terms which correspond to the mathematical reference figure used for the earth,
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an ellipsoid. In terms of spherical harmonics, the comronets of y are given by:

2 2
vy, =M - 33,(R BGcos L-1)-
u 1 -

2 r/ & 2
RS (35 cos L - 30 cos L+3)—}
'3

-

Y, =0 | (3)

[

Y = - 3GM (R)z sinLcosL|J2+53 R .

n - ? 6 r
r -
L-3)-i

——

(7 c<:~s2

where
GM = gravitational constant times mass of Earth
L = geocentric latitude of vehicle (approximated by geodetic latitude)
R = equatorial radius of earth
J2,J4 = second and fourth degree zonal harmonic coefficients of geopotential
The earth rotation term, Qi-e Qie r, is computed along with the reference gravita-
tion vector so that we may consider the gravity vector as
*
g=y +3g )
*
where Y =reference gravity vector.
The components of the reference gravity vector are given by
* 2 2
Y SYyt W e COS L
* .
‘Y e = o : (5)
* 2 .
Y n=Yn "W e SN Lcos L
We = earth rotation rate
The gravity disturbance vector, §g, which can be defined via equation (4) as the
difference between the actual gravity vector and the reference gravity vector, has a root
mean square (RMS) value over the United States of 17 ug in the gravity anomaly or down
component (5). Extremes in excess of 100 ug occur. While the RMS values are

representative of the gravity disturbance, their actual values are very position dependent,

varying with longitude as well as latitude and height. Further, their correlation distances

are rather short, about 20 km for the east and north components; the position dependence
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an ellipsoid. In terms of spherical harmonics, the componets of y are given by:

2 2
v =M _33,/R\ Geos L-1)-
u 1 A

r r/ » 2
53, (5)“ (35cos L-30cos L+ 3)—;
8 rj- -
Ye =0 (3)

L)
-.3cm fgE sinLcosL|B+5 R .
Yo ™~ F= T) 6 r
r -
(7coszL-)—i

o
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where
GM = gravitational constant times mass of Earth
L = geocentric latitude of vehicle (approximated by geodetic latitude)
R = equatorial radius of earth
J2,Jy = second and fourth degree zonal harmonic coefficients of geopotential
The earth rotation term, Qie Qie r, is computed along with the reference gravita-
tion vector so that we may consider the gravity vector as
*
g=y +3g (s)
*
where y =reference gravity vector.
The components of the reference gravity vector are given by
» 2 2
Y g =Yyt W je COS L
* .
Y e =0 (5)
* 2 )
Y n=Yn- W esinlcosl
Wy = earth rotation rate
The gravity disturbance vector, §g, which can be defined via equation (4) as the
difference between the actual gravity vector and the reference gravity vector, has a root
mean square (RMS) value over the United States of 17 ug in the gravity anomaly or down
component (5). Extremes in excess of 100 ug occur. While the RMS values are

representative of the gravity disturbance, their actual values are very position dependent,

varying with longitude as well as latitude and height. Further, their correlation distances

are rather short, about 20 km for the east and north components; the position dependence
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is seen to be rather strong. Thus, it is advisable to incorporate into the gravity
computation feedback loop a computation of the gravity disturbance as a function of
position.

A rigorous computation of the gravity disturbance components involves a world-

wide integration of gravity anomaly data via the equations (6):

R [Ag3S(n V)
‘Sgu' 4w ar &
o
§8.= R Ag 3S(r, b) &
4mrcos Lo A 6)

Ag =R Ag 3S(r )
‘HI’r':I oL

where
A g = gravity anomaly for surface element do

S(r,) = the extended Stokes Function

2
S(ry)) = 2R+R - 3—&9-" R cos .

r r
p r

r
5+3nr-Rcosy +p
2r _

i
!
L
o =(r2 + Rz -2chosw]y2
Y = cos - (sin L sin L' + cos L cos L' cos (A" - 1))
L' X' = coordinates of midpoint of surface element to which Ag and & refer.
o = surface area of earth
The computer storage and time needed to calculate § g from these equations make
their real-time use impractical. The alternative to this computation is the development
of modeling techniques in which the gravity disturbance vector can be accurately
represented by some mathematical function which is adaptable to real-time computation
and is conservative of avionics computer resources.
Although several mathematical models may be applicable to the gravity
disturbance modeling problem, two techniques have shown particular promise in investiga-

tions conducted at the Defense Mapping Agency Aerospace Center. The modeling

technique which has withstood the test of time and application is the use of point masses
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(7). A relatively recent technique, still under investigation at DMA Aerospace Center, is

the Finite Element Method in which Chebyshev polynominals are used to model the
gravity disturbances in small volumes (finite elements) (8). See references (9) and (10) for
results of DMA Aerospace Center investigation into goodness of fit of the Finite Element
modeling and the result of gravity disturbance modeling on a selected test flight track.

Iin the Point Mass Model, the gravity disturbances are given by (7)

Sg —amz o™\ 1 30
j=1 \M ;"‘ r
N
%g.=amz -(M\1 2p
j=1 M}p’ A (7)
5 N
gn=GMZ':=1—_n3J. 1l 3p
) M/ oL

where

p = distance from jth point mass to exterior point
(Mj/M) = ratio of jth point mass to Earth's mass

N = number of point masses in set.

In the Finite Element Model, the gravity disturbances are given by (8).

S .3 1 "I C T T Tux)
UT 0 jeo  jmo Uik b 1§72 kT3

Se -% "I e T Tx) Tk (®)
€ n=o i=o0 j=o eiik T2 kT3

68 =§ g n-é C.  T.x,) T.x,) T (xs)
" n=o =0 j=o0 Mijk ! 772 Tk
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N = highest order of approximating polynomials

k =n-i-j
xl = (h-href)/Ah
Xy = ()\-Xref)/AX

X3 = (L-Lref)/b L

T_(X) = shifted Chebyshev polynomials

Cu , Ce y Cn = coefficients of the set

ijk ijk ijk

href’ Aref’ Lref= = coordinates of lower southwestern point of cell

Ah, AX, AL = dimensions of the cell

In both the Point Mass or Finite Element techniques, the parameters of the fit,
{m./M) or Cu ,C. Cn , are determined by least square fit to available geopotential

J ijk ik Mijk
data.

In our previous investigations of the Finite Element Method (9), we selected a 9° x
15° x 9 km region 32°N - MON, 108°w - 93°W, 0 - 9 km altitude) in the southwestern
part of the continental United States (Figure 2) to perform test computations. It was
found that third order polynomials would suffice to model the east and north components
of the gravity disturbance vector to an accuracy of + 5 ug in 102 elements in this area.
Of the remaining elements, 29 were adequately modeled with sixth order polynomials
(stippled on Figure 2) while the remaining four required ninth order polynomials (stippled
and boxed on Figure 2). Along a simulated flight line which carries an aircraft at Mach
0.5 over a mixture of cells requiring third, sixth and ninth order polynomials, we found
that if third, sixth and ninth order polynomials were used as required, the modeling

accuracy achieved was + 2.4 ug in the east component and +2.7 u g in the north component,

This accuracy will be accepted in this paper as representative of that which can be

achieved by either Point Mass or Finite Element modeling.
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IL. ERROR PROPAGATIONS AND KALMAN FILTERING

A semi-continuous Kalinan Filter process is used in which the error state vector is
propagated by the equation
X=F@X+W+U (9)

Where
X = error state vector .
98X
F(t) = fundamental matrix, essentail.y 93X
W = vector of error forcing functions
U = vector of correcting functions
Assuming that the vertical channel is damped by a barometric or radar altimeter, the
state vector consists of east and north position errors, east and north velocity errors and
platform orientation errors about the east, north and down axes.
The error covariance matrix is progagated by the equation
P = F()P +PE (1) + Q1) (10)
where

P = error covariance matrix of system

Q(t) = error covariance of forcing functions minus
correcting functions if any

Note that W is considered to be white noise with zero mean and covariance Q(t).
A discrete Kalman Filter is introduced to incorporate position and velocity

updates, data which will be available at discrete intervals. The error state vector is

updated by the equation

X(+) - )_('(') - K(Z_ - Hi(-)) (l l)

and the error covariance matrix by the equation

pt) . (1- KH)P(‘) (12)

where

- 05 W
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Z = a measurement matrix

H = a matrix relating the measurement to the state vector

in the sense Z = HX

K = the Kalman gain matrix

The matrix Z is assumed zero, since the measurement resets the position and velocity

with “"zero" error.

The Kalman gain matrix is the keystone of the filtering process in that it provides for

relative weighting between the error covariance of the state vector and the error

covariance of the measurement. It is given by:

K = POHHPHT - R) -

(13)

where

R = error covariance matrix of measurement.

Note: In equations (11) through (13), the superscript () implies "immediately before

(+)

update”, and the superscript '’ implies "immediately after update.”

A gyro drift rate of 0.000001°/hour and an accelerometer bias of | W g were
included. In each error propagation, the vector of error forcing functions, W, includes not
only these effects but also the unmodeled gravity disturbance vector §g, which we have
computed for all points on the simulated flight line by application of equations (6) to

k actual gravity data. The error covariance Q of this forcing function is a diagonal matrix

10 2
with the gravity disturbance variances set to 64 x 10” (m/sec/sec) for the unmodeled

mw&mmmmfma\wymwﬁ—gg\,,wr (R P R e

gravity disturbances and equal to the modeling accuracy stated above for the modeled

] gravity disturbances (11),

Tt g e

Two propagations were accomplished over the flight line depicted on Figure 2 to

establish a baseline reflecting the effect of the gravity disturbances with no updating by

GPS data. One propagation was accomplished with the vector of correcting functions, U,

equal to zero, representing the error state vector which would result if the gravity

disturbances were left unmodeled. The second propagation was accomplished with U set

equal to the value determined by the Finite Element method as a function of position.

Results of these propagations are given in Table L.

8




TABLE 1
Maximum Error State Vector (no GPS Update)
Component Unmodeled Modeled
E 1059.24m 31.78m
1450.59m 62.10m
1.218m/sec 0.038m/sec
1.598m/sec 0.069m/sec

Three additional sets of propagations were accomplished in order to assess the

impact of the GPS data on the inertial navigation system, with and without the gravity

disturbance modeling. In these propagations the measurement covariance matrix R is a
diagonal matrix with the pertinent elements set equal to the accuracies cited earlier in
this paper for the GPS. A measurement is assumed available at each time increment
along the flight line. The inertial navigator may use the position data, the velocity data,

or both for updating. Table Il gives the results for the case where both are used.

TABLE I
Maximum Error State Vector (Position and Velocity Data)
Component Unmodeled Modeled
73.97m 8.08m
42.43m 8.44m

e T et VAT T £\ 3 o 1 ¢ S MR WP WUTCI AP, 97 (ST

0.233m/sec 0.017m/sec
0.162m/sec 0.019m/sec
The application of the GPS data has improved the unmodeled case by better than an order

of magnitude in position and nearly as well in velocity. However, the improvement is not

KT W APOYART IS I I £ A AR e T




as great as that afforded by gravity disturbance modeling without the GPS data (see Table
I). When the inertial navigator is furnished with both GPS data and gravity disturbance
modeling, the results are quite dramatic.

Tables III and IV give the results for the cases where position data only and
velocity data only, respectively, are used.

TABLE Il

Maximum Error State Vector (Position Data Only)

‘ : Component Unmodeled Modeled
E 82.32m 8.46m
N 47 .90m 8.89m
E 0.255m/sec 0.017m/sec
N 0.177m/sec 0.019m/sec
TABLE IV

Maximum Error State Vector (Velocity Data Only)

Component Unmodeled Modeled
E 248.28m 21.88m
N 220.92m 20.58m
E 0.284m/sec 0.028m/sec
N 0.236m/sec 0.026m/sec

The use of position information alone to update the inertial navigator yields error state
vectors nearly the same as those using both position and velocity data. The velocity
information does not contribute as significantly to the updating process; however, velocity
data provides a substantial improvement in the case where gravity disturbances remain
unmodeled.

Figures 3 through 6 graphically portray the variations of the error as a quasi-

time-dependent accelerometer bias. On these graphics, which are computer drawn, the

fainter lines are the position and velocity errors due to the unmodeled gravity disturbance

10




vector, while the heavier lines are the position and velocity errors after compensation for
the gravity disturbances has been applied.

Because the updating occurs in a semi-continuous mode, i.e., at each time
increment along the flight line, we do not see glitches or a saw-tooth effect in the
graphics. Instead, the graphics approximate sine waves with a frequency equal to the
Schuler frequency (period = 84 minutes). Higher frequency variations, especially apparent
in the velocity graphic, reflect the effect of the short wavelength components of the
gravity field.

V. CONCLUSIONS

Although the GPS provides the most accurate and effective means of providing
updated position and velocity data to an inertial navigation system, the error state vector
may grow to greater limits than that tolerable in certain applications. Using optimum
gravity disturbance modeling techniques, without further updating by the GPS, the
maximum error state vector can be made comparable with that obtainable by the GPS. It
is seen then as an alternative should GPS be denied to the inertial navigator. The fullest
capabilities of both are realized when the inertial navigator has both gravity disturbance
modeling and position and velocity updating from the GPS. If, in the interest of
conserving computer resources, it is desirable to use only position data in the updates,

there is only a minor degradation in performance of the system. Use of only velocity data

in the updates offers an improvement over no modeling at all.
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